

Python Arcade Library Rogue-Like

[image: _images/screenshot.png]
This is a rogue-like [https://en.wikipedia.org/wiki/Roguelike] adventure written in the Python computer language [https://www.python.org/]
using the Arcade Library [https://arcade.academy].

Use this code to hack away at creating your own adventure game!

	How To Install

	How To Play
	Key Bindings

	Combat

	Features

	Code Documentation
	Game Window

	Game Engine

Other links:

	Source on GitHub [https://github.com/pythonarcade/roguelike]

	Arcade Library [https://arcade.academy]

	License (MIT) [https://github.com/pythonarcade/roguelike/blob/master/license.rst]

How To Install

	Download or clone the code from GitHub: https://github.com/pythonarcade/roguelike

	Switch to the directory, or open in an IDE like PyCharm

	Create a new virtual environment

	Install the depended packages through your IDE or via pip install -r requirements.txt

	Run with python source

How To Play

Key Bindings

	Move with the number pad in 8 directions (num lock off)

	Pick up an item with G or Num 5

	Select an item with the numbers 1 - 9

	Use the selected item with U

	Drop the selected item with D

	Save game with S

	Load game with L

	Bring up the character screen with C

	If you have ability points, click on the + to increase that stat

	Cancel the grid selection, character screen, etc. with Esc

Combat

	Move ‘into’ a monster to attack it

	Fireball is an area of effect weapon, and can damage the player.

	Lightning attacks the closest monster

Features

	Procedural dungeons

	Character leveling system

	Ranged lighting spell

	Area of effect spell

	Field of vision

	Monster table

	Inventory management system

	A-star path-finding for monsters

	Can save/restore dungeon via JSON formatted data

	Message/event system

Code Documentation

At the top level, the __main__.py file will create an instance of the
GameWindow class. This class manages the GUI and responds to events.

The next layer down is the GameEngine. This is more of a logic layer, although
it isn’t completely divorced from the display.

Game Window

Main Window Manager.

	
class source.game_window.MyGame(width, height, title)

	Main application class.
Manage the GUI

	
__init__(width, height, title)

	
	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) –

	height (int [https://docs.python.org/3/library/functions.html#int]) –

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
check_for_player_movement()

	Figure out if we should move the player or not based on keys currently
held down.

	
draw_character_screen()

	

	
draw_hp_and_status_bar()

	

	
draw_in_normal_state()

	

	
draw_in_select_location_state()

	

	
draw_inventory()

	

	
draw_messages()

	

	
draw_mouse_over_text()

	

	
draw_sprites_and_status_panel()

	

	
handle_character_screen_click(x, y)

	

	
handle_messages()

	

	
load()

	Load the game from disk.

	
on_draw()

	Render the screen.

	
on_key_press(key, modifiers)

	Manage key-down events

	Parameters

	
	key (int [https://docs.python.org/3/library/functions.html#int]) –

	modifiers (int [https://docs.python.org/3/library/functions.html#int]) –

	
on_key_release(key, modifiers)

	Called when the user releases a key.

	Parameters

	
	key (int [https://docs.python.org/3/library/functions.html#int]) –

	modifiers (int [https://docs.python.org/3/library/functions.html#int]) –

	
on_mouse_motion(x, y, dx, dy)

	Handle mouse motion, mostly just used for mouse-over text.

	
on_mouse_press(x, y, button, modifiers)

	Handle mouse-down events

	Parameters

	
	x (float [https://docs.python.org/3/library/functions.html#float]) –

	y (float [https://docs.python.org/3/library/functions.html#float]) –

	button (int [https://docs.python.org/3/library/functions.html#int]) –

	modifiers (int [https://docs.python.org/3/library/functions.html#int]) –

	
on_update(delta_time)

	Manage regular updates for the game

	Parameters

	delta_time (float [https://docs.python.org/3/library/functions.html#float]) –

	
save()

	Save the current game to disk.

	
setup()

	Set up the game here. Call this function to restart the game.

	
source.game_window.main()

	Main method for starting the rogue-like game

Game Engine

Define the game engine

	
class source.game_engine.GameEngine

	This is the main game engine class, that manages the game and its actions.

	
__init__()

	Set the game engine’s attributes

	
check_experience_level()

	See if the player should level up

	
dying(target)

	Handle event of an entity dying

	Parameters

	target (Entity) –

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_dict()

	Get a dictionary object for the entire game. Used in serializing
the game state for saving to disk or sending over the network.

	
grid_click(grid_x, grid_y)

	Handle a click on the grid

	
move_enemies()

	Process enemy movement.

	
move_player(cx, cy)

	Process player movement

	Parameters

	
	cx (int [https://docs.python.org/3/library/functions.html#int]) –

	cy (int [https://docs.python.org/3/library/functions.html#int]) –

	
pick_up()

	Handle a pick-up item entity request.

	
process_action_queue(delta_time)

	Process the action queue, kind of a dispatch-center for the game.

	Parameters

	delta_time (float [https://docs.python.org/3/library/functions.html#float]) –

	
restore_from_dict(data)

	Restore this object from a dictionary object. Used in recreating a game from a
saved state, or from over the network.

	Parameters

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	
setup()

	Set up the game here. Call this function to restart the game.

	
setup_level(level_number)

	
	Parameters

	level_number (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	GameLevel

	
use_stairs()

	

	
class source.game_engine.GameLevel

	
	
__init__()

	Initialize level instance.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 source	

 	
 	
 source.game_engine	

 	
 	
 source.game_window	

Index

 _
 | C
 | D
 | G
 | H
 | L
 | M
 | O
 | P
 | R
 | S
 | U

_

 	
 	__init__() (source.game_engine.GameEngine method)

 	(source.game_engine.GameLevel method)

 	(source.game_window.MyGame method)

C

 	
 	check_experience_level() (source.game_engine.GameEngine method)

 	
 	check_for_player_movement() (source.game_window.MyGame method)

D

 	
 	draw_character_screen() (source.game_window.MyGame method)

 	draw_hp_and_status_bar() (source.game_window.MyGame method)

 	draw_in_normal_state() (source.game_window.MyGame method)

 	draw_in_select_location_state() (source.game_window.MyGame method)

 	
 	draw_inventory() (source.game_window.MyGame method)

 	draw_messages() (source.game_window.MyGame method)

 	draw_mouse_over_text() (source.game_window.MyGame method)

 	draw_sprites_and_status_panel() (source.game_window.MyGame method)

 	dying() (source.game_engine.GameEngine method)

G

 	
 	GameEngine (class in source.game_engine)

 	GameLevel (class in source.game_engine)

 	
 	get_dict() (source.game_engine.GameEngine method)

 	grid_click() (source.game_engine.GameEngine method)

H

 	
 	handle_character_screen_click() (source.game_window.MyGame method)

 	
 	handle_messages() (source.game_window.MyGame method)

L

 	
 	load() (source.game_window.MyGame method)

M

 	
 	main() (in module source.game_window)

 	
 module

 	source.game_engine

 	source.game_window

 	
 	move_enemies() (source.game_engine.GameEngine method)

 	move_player() (source.game_engine.GameEngine method)

 	MyGame (class in source.game_window)

O

 	
 	on_draw() (source.game_window.MyGame method)

 	on_key_press() (source.game_window.MyGame method)

 	on_key_release() (source.game_window.MyGame method)

 	
 	on_mouse_motion() (source.game_window.MyGame method)

 	on_mouse_press() (source.game_window.MyGame method)

 	on_update() (source.game_window.MyGame method)

P

 	
 	pick_up() (source.game_engine.GameEngine method)

 	
 	process_action_queue() (source.game_engine.GameEngine method)

R

 	
 	restore_from_dict() (source.game_engine.GameEngine method)

S

 	
 	save() (source.game_window.MyGame method)

 	setup() (source.game_engine.GameEngine method)

 	(source.game_window.MyGame method)

 	setup_level() (source.game_engine.GameEngine method)

 	
 	
 source.game_engine

 	module

 	
 source.game_window

 	module

U

 	
 	use_stairs() (source.game_engine.GameEngine method)

 nav.xhtml

 Table of Contents

 		
 Python Arcade Library Rogue-Like

 		
 How To Install

 		
 How To Play

 		
 Key Bindings

 		
 Combat

 		
 Features

 		
 Code Documentation

 		
 Game Window

 		
 Game Engine

_static/plus.png

_static/file.png

_static/minus.png

_images/screenshot.png
1: Lightning Scroll

—
HP: 0/35

XP: 965/1,500 Level: 2

Giant rat attacks Player for 1 hif
Player has died!

2: Lightning Scroll Ia

it points.

|a:

